
Simon Brown
@simonbrown

The lost art of

software design

@simonbrown

Over the past decade, many
teams have thrown away

big design up front

@simonbrown

Unfortunately, architectural
thinking, documentation,

diagramming and modelling

were also often discarded

@simonbrown

The Agile Manifesto

doesn’t say

“don’t do design” 🙄

@simonbrown

You can’t move fast

with 💩 code

“ ”Big design up front is dumb.

Doing no design up front

is even dumber.
Dave Thomas

@simonbrown

Big Design Up Front

Evolutionary Design

@simonbrown

Evolutionary
architecture

@simonbrown

Evolutionary architecture

Architecting for change also results

in significant decisions being made!

@simonbrown

Planned vs unplanned evolution

… both need to be guided

@simonbrown

Goals

1. Explain why some up front design is useful

2. Provide some tips on how to do design better

Some Design Up Front + Evolutionary Design

@simonbrown

Product

Design

Product vision,

UX, UI, A/B testing,

experimentation

business process,

etc

I’m referring to technical design

rather than product design

Technical

Design

Technical vision,

technologies, modularity,

quality attributes,

environmental constraints,

etc

@simonbrown

Simon Brown

Independent consultant specialising in software architecture,

plus the creator of the C4 model and Structurizr

@simonbrown

Architecture meets agile

“we’re about to start our agile transformation … we need help

making our architecture/design processes more agile”

Agile meets architecture

“we’ve been on our agile journey for X years … our software lacks

structure, we have no documentation, etc”

vs

1. Context
A global investment bank based in London, New York and Singapore trades (buys and sells) financial products with
other banks (“counterparties"). When share prices on the stock markets move up or down, the bank either makes
money or loses it. At the end of the working day, the bank needs to gain a view of how much risk of losing money
they are exposed to, by running some calculations on the data held about their trades. The bank has an existing
Trade Data System (TDS) and Reference Data System (RDS) but needs a new Risk System.

1.1. Trade Data System
The Trade Data System maintains a store of all trades made by the bank. It is already configured to generate a file-
based XML export of trade data to a network share at the close of business at 5pm in New York. The export
includes the following information for every trade made by the bank:

• Trade ID, Date, Current trade value in US dollars, Counterparty ID

1.2. Reference Data System
The Reference Data System stores all of the reference data needed by the bank. This includes information about
counterparties (other banks). A file-based XML export is also generated to a network share at 5pm in New York,
and it includes some basic information about each counterparty. A new reference data system is due for
completion in the next 3 months, and the current system will eventually be decommissioned. The current data
export includes:

• Counterparty ID, Name, Address, etc…

2. Functional Requirements
1. Import trade data from the Trade Data System.
2. Import counterparty data from the Reference Data System.
3. Join the two sets of data together, enriching the trade data with information about the counterparty.
4. For each counterparty, calculate the risk that the bank is exposed to.
5. Generate a report that can be imported into Microsoft Excel containing the risk figures for all

counterparties known by the bank.
6. Distribute the report to the business users before the start of the next trading day (9am) in Singapore.
7. Provide a way for a subset of the business users to configure and maintain the external parameters used

by the risk calculations. 

“Financial Risk System” architecture kata
Simon Brown | @simonbrown

Financial Risk System 3. Non-functional Requirements
a. Performance

• Risk reports must be generated before 9am the following business day in Singapore.

b. Scalability
• The system must be able to cope with trade volumes for the next 5 years.

• The Trade Data System export includes approximately 5000 trades now and it is anticipated that there
will be slow but steady growth of 10 additional trades per day.

• The Reference Data System export includes approximately 20,000 counterparties and growth will be
negligible.

• There are 40-50 business users around the world that need access to the report.

c. Availability
• Risk reports should be available to users 24x7, but a small amount of downtime (less than 30 minutes per

day) can be tolerated.

d. Failover
• Manual failover is sufficient, provided that the availability targets can be met.

e. Security
• This system must follow bank policy that states system access is restricted to authenticated and authorised

users only.
• Reports must only be distributed to authorised users.
• Only a subset of the authorised users are permitted to modify the parameters used in the risk calculations.
• Although desirable, there are no single sign-on requirements (e.g. integration with Active Directory, LDAP,

etc).
• All access to the system and reports will be within the confines of the bank’s global network.

f. Audit
• The following events must be recorded in the system audit logs:

• Report generation.
• Modification of risk calculation parameters.

g. Fault Tolerance and Resilience
• The system should take appropriate steps to recover from an error if possible, but all errors should be

logged.
• Errors preventing a counterparty risk calculation being completed should be logged and the process should

continue.

h. Internationalization and Localization
• All user interfaces will be presented in English only.
• All reports will be presented in English only.
• All trading values and risk figures will be presented in US dollars only.

i. Monitoring and Management
• A Simple Network Management Protocol (SNMP) trap should be sent to the bank’s Central Monitoring

Service in the following circumstances:
• When there is a fatal error with the system.
• When reports have not been generated before 9am Singapore time.

j. Data Retention and Archiving
• Input files used in the risk calculation process must be retained for 1 year.

k. Interoperability
• Interfaces with existing data systems should conform to and use existing data formats.

“Financial Risk System” architecture kata
Simon Brown | @simonbrown

Design a software solution for

the ”Financial Risk System”, and

draw one or more architecture

diagrams to describe your solution

60-90 minutes

@simonbrown

Iteration 1

@simonbrown

@simonbrown

Iteration 2

@simonbrown

@simonbrown

“ ”So you’re teaching teams

how to create nice diagrams?

Up Front Design

@simonbrown

#1

“Are we allowed

to do

up front design?”

@simonbrown

#12

“We don't do up
front design

because we do
XP.”

@simonbrown

#17

“It’s not expected
in agile.”

“ ”
There is no Big Design Up Front. Most of the design activity

takes place on the fly and incrementally, starting with "the
simplest thing that could possibly work" and adding complexity

only when it's required by failing tests.

https://en.wikipedia.org/wiki/Extreme_programming

“ ”
What role does an architecture play when you are using evolutionary

design? Again XPs critics state that XP ignores architecture, that XP's route is
to go to code fast and trust that refactoring that will solve all design issues.
Interestingly they are right, and that may well be weakness. Certainly the

most aggressive XPers - Kent Beck, Ron Jeffries, and Bob Martin - are
putting more and more energy into avoiding any up front architectural

design. Don't put in a database until you really know you'll need it. Work
with files first and refactor the database in during a later iteration.

Martin Fowler

https://martinfowler.com/articles/designDead.html

@simonbrown

The “luminaries” in Agile are not telling people to do design either

(it’s easy to make assumptions about what's not being said)

@simonbrown

Remember that the folks

behind the agile manifesto

have a lot of experience.

Most teams likely don’t have

that same level of experience.

@simonbrown

Many people haven’t been

exposed to the problems that

agile was trying to solve

@simonbrown

@simonbrown

@simonbrown

@simonbrown

@simonbrown

Agility requires a toolbox of
techniques and practices

but many people don’t have them,
and we’ve stopped teaching them

@simonbrown

How do you design software?

“ ”we use a whiteboard

“ ”we draw boxes and lines

“ ”the boxes

represent components

“ ”we use our

experience

@simonbrown

@simonbrown

@simonbrown

Class-Responsibility-Collaboration

Class

Responsibilities Collaborators

Class

Responsibilities
Collaborators

Class

Responsi
bilities

Collabo
rators

@simonbrown

Up front design is not

necessarily about creating a

perfect end-state or

complete architecture

@simonbrown

Evolutionary Design

Beginning With A Primitive Whole

@simonbrown

Evolutionary Design

Beginning With A Primitive Whole

“ ”Continuous attention to

technical excellence and

good design enhances agility.
Principle 9 of the Manifesto for Agile Software Development

@simonbrown

A good architecture

enables agility

@simonbrown

Enough up front design

to create a good

starting point and direction

@simonbrown

A starting point

adds value

@simonbrown

Every team needs

technical leadership

(irrespective of team size)

@simonbrown

Technical leadership exists at

multiple levels and dimensions

within most organisations

(from the enterprise perspective and platform teams; through to individual delivery teams,

irrespective of whether they have a system or service/capability focus)

Incomprehensible software
architecture diagrams

@simonbrown

UML?

@simonbrown

UML usage is low

@simonbrown

#1

“I don’t know it.”

@simonbrown

#36

“You’ll be seen as
old.”

@simonbrown

#37

“You’ll be seen as
old-fashioned.”

@simonbrown

#80

“It’s too detailed.”

@simonbrown

#46

“We don’t want to
tell developers

what to do.”

@simonbrown

#66

“The tooling
sucks.”

@simonbrown

#92

“It’s not expected

in agile.”

“ ”
Would it be better if we used a CASE tool to lay out the design?

No, it wouldn't. The design is more readily expressed, changed, and
understood when done less formally, with CRC or on the whiteboard

or a bar napkin.

Ron Jeffries

https://ronjeffries.com/xprog/articles/fussaboutdocumentation/

@simonbrown

@simonbrown

@simonbrown

“just use a whiteboard”

@simonbrown

What’s wrong these diagrams?

The perfection game

We rate the diagrams… (1-10)

We liked…

To make the diagrams perfect…

15 minutes

@simonbrown

7

@simonbrown

7

@simonbrown

7

@simonbrown

7

@simonbrown

7

@simonbrown

7

@simonbrown

6

@simonbrown

/7 10

Swap and review your diagrams

1. Do the solutions satisfy the architectural drivers?

2. If you were the bank, would you buy this solution?

10 minutes

“ ”It’s impossible to

answer those questions

@simonbrown

If you can’t see and understand

a solution, you can’t evaluate it

@simonbrown

#97

“The value is

in the

conversation.”

“ ”
Now don’t get me wrong (again). You may well need some nicely formatted UML for your

project, or you may need to print out Javadoc when you distribute your code to other users, or
you may need to document the requirements for management or as part of a contract. If and
when you really need these things, then by all means you should do them. But inside your

collocated Whole Team, you most probably will not need them, because the information
you need will be communicated through the more effective medium of conversation.

Ron Jeffries

https://ronjeffries.com/xprog/articles/fussaboutdocumentation/

“ ”
They are all excellent, as long as there
is a conversation about their meaning

and intent. It's the accompanying
conversation that matters.

@simonbrown

“the value is in the conversation”

only works if you’re having

the right conversations

Superficial up front design

@simonbrown

#4

“Is this a
microservices
architecture?”

@simonbrown

#73

“Why is the ORM

directly connected

to the Angular
front-end?”

@simonbrown

Why is the ORM

directly connected to

the Angular front-end?

@simonbrown

#76

“Is the web UI
getting data from

Amazon S3?”

@simonbrown

If you don’t engage in the problem, you end up with
a very simplified and superficial view of the solution

@simonbrown

A good architecture rarely

happens through

architecture-indifferent design

@simonbrown

Part of the design activity is about
discovering “unknown unknowns”

@simonbrown

The typical s-curve of learning

Slow initial progress

Accelerated learning

Plateau

Technology Decisions

@simonbrown

The producer-consumer conflict

of software architecture diagrams

I don’t want to put
technology choices on

the diagrams…

I wish these diagrams
included technology

choices…

Producer Consumer

@simonbrown

#8

“We don’t
solutionize.”

@simonbrown

#10

“Our architects

are not allowed

to do
solutioneering.”

@simonbrown

#39

“We don’t want to
impose a solution

upon the
development

team.”

@simonbrown

#42

“We’re a Java team,

so it’s obviously

a Java solution.”

How much up front design?

@simonbrown

1. Is that what we’re going to build?

2. Is it going to work?

@simonbrown

We’re not trying to

make every decision

“ ”
Architecture represents the

significant decisions, where significance

is measured by cost of change.

Grady Booch

@simonbrown

Curly braces on the same or next line

Whitespace vs tabs

Programming languages

Technologies and platforms

Monolith, microservices or hybrid approach
Architecture

Design

Implementation

“ ”I think there is a role for a broad starting point architecture. Such things
as stating early on how to layer the application, how you'll interact with the
database (if you need one), what approach to use to handle the web server.

Martin Fowler

https://martinfowler.com/articles/designDead.html

@simonbrown

“just use a whiteboard;

the value is in the conversation”

@simonbrown

@simonbrown

1. Is that what we’re going to build?

2. Is it going to work?

@simonbrown

Teams need a ubiquitous language

to communicate effectively

A common set of abstractions

is more important

than a common notation

Zoom in

Zoom in

Level 1

Context
Level 2

Containers
Level 3

Components
Level 4

Code

Zoom in

The C4 model for visualising

software architecture

c4model.com

@simonbrown

Diagrams are maps

that help software developers navigate a large and/or complex codebase

@simonbrown

Diagrams are maps

that help software developers navigate a large and/or complex codebase

@simonbrown

Diagrams are maps

that help software developers navigate a large and/or complex codebase

@simonbrown

Diagrams are maps

that help software developers navigate a large and/or complex codebase

@simonbrown

Diagrams are maps

that help software developers navigate a large and/or complex codebase

@simonbrown

Diagrams are a visual checklist

for design decisions

@simonbrown

System Context diagram

What is the scope of the software system we’re building?

Who is using it? What are they doing?

What system integrations does it need to support?

@simonbrown

@simonbrown

Container diagram

What are the major technology building blocks?

What are their responsibilities?

How do they communicate?

@simonbrown

@simonbrown

The diagrams should spark
meaningful questions

@simonbrown

No

“What does that arrow mean?”

“Why are some boxes red?”

“Is that a Java application?”

“Is that a monolithic application, or a collection of microservices?”

“How do the users get their reports?”

@simonbrown

Yes

“What protocol are your two Java applications using

to communicate with each other?”

“Why do you have two separate C# applications instead of one?”

“Why are you using MongoDB?”

“Why are you using MySQL when our standard is Oracle?”

“Should we really build new applications with .NET Framework

rather than .NET Core?”

@simonbrown

Richer diagrams lead to

richer design discussions

@simonbrown

Richer diagrams lead to

better communication,

making it easier to scale teams

@simonbrown

The diagrams should provide
meaningful feedback

“ ”We’re trying to diagram a

[microservices|serverless] architecture,

but the diagram is getting complicated.

@simonbrown

1. Is that what we’re going to build?

2. Is it going to work?

“ ”
Base your architecture on
requirements, travel light

and prove your architecture

with concrete experiments.

Agile Architecture: Strategies for Scaling Agile Development

Scott Ambler

@simonbrown

Identify and mitigate

your highest priority risks

@simonbrown

Like estimates,

risks are subjective

@simonbrown

Risk-storming

A visual and collaborative technique for identifying risk

@simonbrown

Threat modelling

(STRIDE, LINDDUN, Attack Trees, etc)

@simonbrown

“Architecture

Decision Record”

A short description of an

architecturally significant decision

http://thinkrelevance.com/blog/2011/11/15/documenting-
architecture-decisions (Michael Nygard)

@simonbrown

How much up front design
should you do?

@simonbrown

Sometimes requirements are known,

and sometimes they aren’t

(enterprise software development vs product companies and startups)

@simonbrown

#52

“I’m good with
maybe a day

for a one-year
effort.”

@simonbrown

Up front design is an iterative and
incremental process; stop when:

@simonbrown

Up front design is an iterative and
incremental process; stop when:

You understand the significant
architectural drivers (requirements,

quality attributes, constraints).

@simonbrown

Up front design is an iterative and
incremental process; stop when:

You understand the significant
architectural drivers (requirements,

quality attributes, constraints).

You understand the context and scope
of what you’re building.

@simonbrown

Up front design is an iterative and
incremental process; stop when:

You understand the significant
architectural drivers (requirements,

quality attributes, constraints).

You understand the context and scope
of what you’re building.

You understand the

significant design decisions

(i.e. technology, modularity, etc).

@simonbrown

Up front design is an iterative and
incremental process; stop when:

You understand the significant
architectural drivers (requirements,

quality attributes, constraints).

You understand the context and scope
of what you’re building.

You understand the

significant design decisions

(i.e. technology, modularity, etc).

You have a way to communicate your
technical vision to other people.

@simonbrown

Up front design is an iterative and
incremental process; stop when:

You understand the significant
architectural drivers (requirements,

quality attributes, constraints).

You understand the context and scope
of what you’re building.

You understand the

significant design decisions

(i.e. technology, modularity, etc).

You have a way to communicate your
technical vision to other people.

You are confident that your design
satisfies the key architectural drivers.

@simonbrown

Up front design is an iterative and
incremental process; stop when:

You understand the significant
architectural drivers (requirements,

quality attributes, constraints).

You understand the context and scope
of what you’re building.

You understand the

significant design decisions

(i.e. technology, modularity, etc).

You have a way to communicate your
technical vision to other people.

You are confident that your design
satisfies the key architectural drivers.

You have identified, and are
comfortable with, the risks associated

with building the software.

@simonbrown

Up front design is an iterative and
incremental process; stop when:

You understand the significant
architectural drivers (requirements,

quality attributes, constraints).

You understand the context and scope
of what you’re building.

You understand the

significant design decisions

(i.e. technology, modularity, etc).

You have a way to communicate your
technical vision to other people.

You are confident that your design
satisfies the key architectural drivers.

You have identified, and are
comfortable with, the risks associated

with building the software.

Techniques: Workshops, interviews, Event Storming, Impact Mapping, domain modelling, OOAD, CRC, DDD,
architecture reviews, ATAM, architecture dry runs, Risk-storming, concrete experiments, C4 model, ADRs, etc.

@simonbrown

Some up front design to create a

starting point and direction

for further evolutionary design

@simonbrown

Adopt an agile mindset

Choose a starting point and continuously improve

to discover what works for you

Simon Brown
@simonbrown

Thank you!

